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Abstract
Fast nonlinear devices with time-delayed feedback,

developed for applications such as communications
and ranging, typically include components that are AC-
coupled, i.e. components that block zero frequencies.
As an example of such a system, we describe a new
opto-electronic device with band-limited feedback that
uses a Mach-Zehnder interferometer as passive nonlin-
earity and a semiconductor laser as a current-to-optical-
frequency converter. Our implementation of the device
produces oscillations in the frequency range of tens to
hundreds of MHz. We observe periodic oscillations
created through a Hopf bifurcation as well as quasiperi-
odic and high dimensional chaotic oscillations. Moti-
vated by the experimental results, we investigate the
steady-state solution and it’s bifurcations in time-delay
systems with band-limited feedback and arbitrary non-
linearity. We show that the steady state loses stability,
generically, through a Hopf bifurcation, which can be
either supercritical or subcritical. As a result of this
investigation, we find that band-limited feedback intro-
duces practical advantages, such as the ability to con-
trol the characteristic time-scale of the dynamics, and
that it introduces differences to Ikeda-type systems al-
ready at the level of steady-state bifurcations, e.g. bi-
furcations exist in which limit cycles are created with
periods other than the fundamental “period-2” mode
found in Ikeda-type systems.

Key words
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1 Introduction
Time-delay devices operating in the radio-frequency

(RF) regime are widely used as generators of chaos
in applications such as communication, chaos control,
and ranging. As an example, such devices are studied
as a signal source for future radar applications because
chaotic waveforms have the desirable properties of a

large frequency-bandwidth and a fast decay of correla-
tions [Lukin, 1997; Myneni, 2001]. Furthermore, time
delayed feedback is used in the chaos control scheme
known as time-delay autosynchronization [Pyragas,
1992; Socolar, 1994]. Additionally, microwave [Myko-
laitis, 2003; V. Dronov], opto-electronic [Abarbanel,
2001; Goedgebuer, 2002; Goedgebuer, 2004; Blakely,
2004a], and optic [VanWiggeren, 1998; Fischer, 2000;
Kusumoto, 2002] time-delay devices are considered for
communication systems since they can generate chaos
with frequencies that match the frequency range of the
communication infrastructure and provide advantages
such as increased privacy [Goedgebuer, 2004] and high
power efficiency [V. Dronov].
At high speed, many components are AC-coupled,

which means that low frequency signals are suppressed
in devices that include such components. As a conse-
quence, the time-delayed feedback signal is band-pass
filtered because, in addition to the cut off at low fre-
quencies, high frequencies are suppressed due to the
finite response time of device components.
Time-delay dynamical system with band-limited feed-

back have recently received increased attention be-
cause they have the advantage that the bandwidth of the
chaotic signal can be tailored to fit a desired commu-
nication band [Goedgebuer, 2002; Goedgebuer, 2004]
and they have flexible dynamical time scales because
adjusting the band-pass characteristics of the feedback
loop allows tuning of the characteristic frequencies
[Blakely, 2004a].
In this paper we investigate time-delay systems with

band-limited feedback both experimentally and theo-
retically.
We describe a new fast optical device that belongs

to the class of optical systems with passive nonlinear-
ity and band-limited feedback in Sec. 2 of this paper.
In our device a Mach-Zehnder interferometer is the
source of nonlinearity while the semiconductor laser
that provides the optical power acts as a linear current-
to-optical-frequency converter. The nonlinearity of the
interferometer coupled with the delay in the feedback
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loop combine to produce a range of steady state, peri-
odic, and chaotic behavior.
Motivated by the experimental findings, we take a

first step in a rigorous study of time-delay systems
with band-limited feedback by investigating the steady-
state bifurcations for arbitrary nonlinearities. In Sec. 3
we derive expressions for the instability boundary and
show that the steady state becomes unstable, generi-
cally, through a Hopf bifurcation. Distinguishing dy-
namical features that arise because of the AC-coupled
components are also discussed.

2 Experimental Results
In this section we present details about the experimen-

tal implementation of our opto-electronic device and
provide a simple a model that permits quantitative pre-
dictions about the device dynamics. We investigate the
nonlinear dynamics of the system through a combina-
tion of experimental observations and numerical com-
putation. A good understanding of the system dynam-
ics is a prerequisite for the development of applications
such as control of fast chaos, which will be reported
elsewhere [Blakely, 2004b].
To characterize the device, we measure the critical

gain at which the device-dynamics transitions from
steady state to oscillatory behavior and determine the
oscillation frequency. Furthermore, we present evi-
dence that our opto-electronic device generates chaos
for large feedback gain.

2.1 Experimental setup
First, we describe details of the experimental imple-

mentation of the active laser interferometer with AC-
coupled feedback. The device consists of the laser,
that acts a current controlled source, the interferometer,
that constitutes the passive nonlinearity in the system,
and the feedback loop with bandpass characteristics. A
schematic of the experimental setup is shown in Fig. 1.
The light source is an AlGaInP diode laser (Hi-

tachi HL6501MG, wavelength 0.65 µm) with a multi-
quantum well structure. The diode is equipped with
a bias-T for adding an RF component to the injection
current. Thermoelectric coolers are used to provide
1 mK temperature stability thereby minimizing fre-
quency and power drift. The output light of the laser is
collimated by a lens (Thorlabs C230TM-B, f=4.5mm)
producing an elliptical beam (1 mm × 5 mm) with a
maximum output power of 35 mW. The relaxation os-
cillation frequency of the laser at the nominal operating
current of 75 mA is ΩR = 2.7 GHz.
The passive nonlinearity in the experiment consists

of a Mach-Zehnder interferometer with unequal path
lengths (path difference 45 cm) into which the laser
beam is directed. A silicon photodetector (Hamma-
matsu S4751, DC-750 MHz bandwidth, 15 V reverse
bias) measures the intensity of light emitted from one
output port of the interferometer. The size of the pho-
todiode is much smaller than the width of the laser

DelayT

Passive Nonlinearity
DC

RF Diode
Laser

Electronic Feedback
Loop with Delay

Mach−Zehnder Interferometer

Photodiode

Amplifier

Amplifier

Figure 1. Schematic of experimental setup. The device consists of

a voltage controlled source, a passive nonlinearity, and a feedback

loop with bandpass characteristics. Details of the setup are explained

in the text.

beam so only a fraction of the interferometer’s output
is detected. The small detector size ensures that only
one fringe appears within the beam cross section thus
compensating for wavefront aberrations and slight laser
beam misalignment and improving the fringe visibility.
The feedback-loop photodiode produces a current pro-

portional to the optical power falling on its surface. The
current is converted to a voltage (using a 50Ω resistor)
and is transmitted down a coaxial cable (RU 58, total
length ∼ 327 cm). The signal emanating from the ca-
ble passes through an AC-coupled amplifier (MiniCir-
cuits ZFL-1000LN, bandwidth 0.1-1000 MHz), a DC-
blocking chip capacitor (220 pF), a second AC-coupled
amplifier (Mini-Circuits ZFL-1000GH, bandwidth 10-
1200 MHz), and a second DC-blocking chip capaci-
tor (470 pF). The capacitors reduce the loop gain at
frequencies below ∼ 7 MHz where a thermal effect
enhances the laser’s sensitivity to frequency modula-
tion [Kobayashi, 1982; Tsai, 1999]. The resulting volt-
age is applied to the bias-T in the laser mount. The
bias-T converts the signal into a current and adds it to
a DC injection current from a commercial laser driver
(Thorlabs LDC500).

2.2 Model of the opto-electronic device
The following delay-differential equation (DDE) can

be derived by considering the relevant physics of the
laser diode, the Mach-Zehnder interferometer, and the
feedback loop components [Blakely, 2004a]:

τhṖ (t̃) = −
(

P (t̃) − P0

)

+ τhκV̇ (t̃),

τlV̇ (t̃) = − V (t̃) + γ G
[

P (t̃ − TD)
]

,
(1)

with

G [P ] = P {1 + β sin [α (P − P0)]} . (2)



In this model V (t̃) is the voltage in the electronic feed-
back loop, P (t̃) denotes the laser’s emission power, and
P0 is the laser power at steady state. All parameters of
the model can be measured and are given in Table I in
Ref. [Blakely, 2004a].
Equation (1) models the band-limited transfer char-

acteristics of the electronic feedback loop as a two-
pole bandpass filter, where the time-scale τh is related
to the corner frequency of the high-pass filter through
ωh = τ−1

h
and τl is related to the corner frequency of

the low-pass filter through ωl = τ−1

l
. The gain due to

the amplifiers is given by γ. The total time-delay is TD.
In the experiment, the laser acts as a linear device

that converts input-voltage oscillations to frequency os-
cillations due to the following mechanism. The in-
jection current applied to the laser diode is a combi-
nation of the DC-bias current and the high-frequency
currents due to the time-delayed output of the feed-
back loop. Modulating semiconductor lasers by vary-
ing the input current results primarily in changes of the
laser frequency and, to a lesser extent, the laser power.
One physical process relating the input current and fre-
quency shifts is the change of carrier density in the
laser device as result of the modulation. A changed
carrier density shifts the refractive index of the mate-
rial that makes up the laser cavity and thereby changes
the frequency of the lasing mode. Due to the bandpass-
limited feedback in our experiment, the pumping cur-
rent is modulated at a rate significantly slower than the
nanosecond internal timescale of the laser (ΩR = 2.7
GHz) and hence the optical frequency will adiabati-
cally follow the pumping current. Thus, the laser is
a linear voltage-to-frequency converter, which is char-
acterized by the conversion strength κ.
The nonlinearity in the experiment is due to the un-

equal pathlength Mach-Zehnder interferometer and is
given by Eq. (2). In Eq. (2), the parameter β is the
fringe visibility and α determines the interferometer
sensitivity.
Model (1) is used for quantitative comparison be-

tween numerical predictions and measured quantities
such as the laser power. However, for theoretical stud-
ies, it is convenient to bring Eq. (1) in a simpler form
by introducing the rescaled and dimensionless vari-
ables t = t̃(τ−1

h
+ τ−1

l
), x = (P − P0)/P0, and

y = τh(τh + τl)
−1 {(P − P0) − κ(V − γG[0])}P−1

0 .
Using these dimensionless variables we obtain the fol-
lowing model:

dx(t)

dt
= −x(t) + y(t) + b

f [x(t − τ)]

f ′(0)
,

dy(t)

dt
= −r x(t).

(3)

Here, the dimensionless delay is τ = TD (τ−1

l
+

τ−1

h
), r = τlτh(τl + τh)−2, and the nonlinear de-

lay term f of (3) is defined as f(x(t − τ)) =
τh(τl + τh)−1 {G[P0(x(t − τ) + 1)] − G[P0]}P−1

0
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Figure 2. Hopf bifurcation of the steady state. A) Scaling of the

oscillation amplitude as the feedback gain is varied. B) Scaling of

the limit-cycle frequency close to instability threshold as a function

of of the delay.

and is given by

f(x) =
τh

τh + τl

(x + β x sin(a x) + β sin(a x)) .

(4)
The parameter b denotes the effective slope of the non-
linearity, i.e. the total feedback-gain for small signals,
and is defined as b = κγf ′(0). The fixed parameters
of model (3) that correspond to the measured device-
parameters [Blakely, 2004a] are given by τ = 29.8,
r = 0.028, a = αP0 = 49.14, τh = 22 ns, τl = 0.66
ns, and β = 0.8.
There are three dimensionless parameters that influ-

ence the dynamics: the effective slope b (proportional
to the gain γ), the strictly positive delay τ , and r
(0 < r ≤ 1/4). The parameter r is related to the
angular frequency at which the transfer-function of the
bandpass-filter is maximum. Indeed, the frequency that
maximizes transmission is ωmax =

√
ωlωh, which, in

the new variables, corresponds to the dimensionless an-
gular frequency Ωmax =

√
r.

2.3 Hopf-Bifurcation
Our device can display very complex dynamics. As

system parameters are varied we observe steady state
behavior, periodic and quasiperiodic oscillations as



well as chaotic dynamics. In this section we discuss
the transition from steady state to periodic behavior.
We know of no exhaustive list that contains all bi-

furcations through which limit cycles (periodic oscil-
lations) can arise in time-delay systems. However, for
those limit-cycle bifurcations that already exist in two-
dimensional systems, this list exists. Furthermore, the
different bifurcation scenarios in this list can be distin-
guished by examining the scaling of the period and am-
plitude near the bifurcation point [Strogatz, 1994]. For
instance, a supercritical Andronov-Hopf bifurcation is
characterized by an amplitude of the stable limit cycle
that scales as the square-root of the distance of the bi-
furcation parameter from the bifurcation point and an
oscillation period of finite size that is approximately
constant as the bifurcation parameter is varied.
To investigate the bifurcations in the system, we var-

ied the feedback gain γ and the delay time TD. Exper-
imentally, we can change TD by adding or subtracting
fixed lengths of coaxial cable to the feedback loop.
First we vary the gain for fixed TD ∼ 19.1 ns. For

gain values below a critical value γ < γC the system
is in a steady state with fluctuations of the observed
laser output power due only to the inherent phase noise.
When the gain is increased through the critical value
γC = 5.1±0.5 mV/mW the steady state is replaced by
a periodic oscillation. The dominant frequency of the
oscillation is 51.5 ± 1 MHz, which is roughly equal
to 1/TD. This frequency does not change much as
the gain is further increased. On the other hand, the
amplitude grows smoothly from zero with increasing
gain. Figure 2A shows the amplitude growth measured
in the experiment. The spontaneous emission noise of
the semiconductor laser leads to an amplification of the
amplitude variations (larger error bars) close to the bi-
furcation [Garcia-Ojalvo, 1996]. It is therefore not pos-
sible to pinpoint the bifurcation point exactly and there
is no clear

√
γ − γC scaling of the amplitude. Nev-

ertheless, the smooth amplitude growth and the finite
period of the limit cycle at γ & γC indicate a super-
critical Andronov-Hopf bifurcation at γC . In the noise-
free model, we find an Andronov-Hopf bifurcation at
γC = 5.34 mV/mW.
Next, we experimentally determined the frequency of

the limit cycle close to the bifurcation point for dif-
ferent delay times TD. In all cases the steady state
becomes unstable through an Andronov-Hopf bifurca-
tion. However, we find that the relation f ∼ 1/TD

between the frequency f and the delay time TD holds
only for a limited range of TD. Figure 2B summarizes
the relation between f and TD that we obtain from ex-
perimental (triangles) and numerically calculated (cir-
cles) time series. The data suggest that the device tran-
sitions from a steady state to limit cycle oscillations
with frequencies roughly n/TD, where n = n(TD) can
be 1, 2, 3, . . ..
All of the above experiments were conducted for posi-

tive feedback-gain. In the experiment, it is also possible
to achieve negative gain [Blakely, 2004a]. For negative
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Figure 3. Experimentally measured timeseries (panels A,C,E) and

power spectra (panels B,D,F) obtained from the second output port

of the interferometer are shown. For γ = 9.4 mV/mW for A) and

B), γ = 13.2 mV/mW for C) and D), and γ = 17.6 mV/mW for

E) and F).

gain, we observe that f ∼ 1/(2TD) for delay times of
TD = 19.1 ns.

2.4 Chaos
Beyond the Hopf bifurcation, successively more com-

plex dynamics develops as the gain is increased. Fig-
ure 3 shows a series of time traces and power spec-
tra. We measured the power spectral density when the
gain is just below the Hopf bifurcation to obtain an
estimate of 2 × 10−3 mW2/MHz2 for the noise floor.
Spectral features weaker than this level are completely
obscured in the experiment. At feedback gains higher
than the Andronov-Hopf bifurcation point, the initially
sinusoidal oscillations begin to square off, as shown
in Fig. 3A. The square shape of the waveform results
in prominent odd harmonics in the spectrum Fig. 3B.
As the gain is increased, a small, broad peak appears
at about half the fundamental frequency as shown in
Fig. 3D. The peak at roughly half the fundamental fre-
quency is three orders of magnitude below the funda-
mental. The weakness and broadness of this peak cou-
pled with the presence of phase noise may explain why
no period doubled behavior is apparent in the time do-
main Fig. 3C. As the gain is further increased, the broad
background rises and the tall peaks at the fundamental
frequency and its harmonics weaken. The power spec-
trum for γ = 17.6 mV/mW, shown in Fig. 3F, is quite
broad and the peaks have nearly dropped to the level
of background. This is indicative of high dimensional
chaos in the system.
A similar very broad and featureless power spectrum

in the chaotic regime for an optical system with pas-
sive nonlinearity and bandpass feedback was reported
in [Goedgebuer, 2002], where the authors also synchro-
nize two of their devices and successfully communicate
information. The ability to synchronize can be inter-
preted as a demonstration that the cause of the broad-



band spectrum is deterministic chaos. Because of the
similarity of their system to ours, we believe the same
to be true for our system. The observed complex behav-
ior for large gain values is due to chaotic deterministic
dynamics.
To support this claim we show time series and power

spectra obtained by numerical simulation of the noise-
free model. The match with the experimental data is
good, as can be seen by comparing Fig. 3 to Fig. 4.
The Poincaré sections of Fig. 4 are obtained by record-
ing the location where the trajectory uni-directionally
crosses a fixed plane (V (t) = V0) in the three dimen-
sional space spanned by (V (t), P (t), P (t − ∆t) with
∆t < TD. The numerics confirm that the system is
on a limit cycle for γ = 9.4 mV/mW, which is clear
from the power spectrum (Fig. 4B) and immediately
obvious in the Poincaré section (Fig. 4C). The noise-
free simulations show that the limit cycle has bifur-
cated to a torus-attractor for increased gain (γ = 13.2
mV/mW), appearing as closed curve in the Poincaré
section (Fig. 4F). The power spectrum, Fig. 4E, ex-
hibits a comb-like structure due to the two incommen-
surate frequencies of the quasi-periodic oscillation. It
should be noted, that there is not only a strong peak at
∼26.6 MHz (roughly half the fundamental frequency)
but also a definite peak at 1.8 MHz, which is well below
the 3 dB cutoff point of the high-pass filter. At present,
we do not understand the origin of this low frequency.
Increasing the gain even further, leads through a se-

ries of complicated bifurcations, that we did not an-
alyze in detail, to the creation of a chaotic attractor,
characterized by a very broadband spectrum (Fig. 4H)
and no discernible structure in the Poincaré section.
The largest Lyapunov exponents at a gain of γ = 17.6
mV/mW are clearly positive. Based on the numerical
computation of the largest Lyapunov exponents at this
gain-value, we obtain an estimate of the attractor’s Lya-
punov dimension of DL ∼ 22.
In summary, using experimental measurements and

numerical computation of the model we show that high
dimensional chaos exists in our device. As the feed-
back gain is increased, the chaotic attractor is created
through a rather complex series of bifurcations, the ini-
tial stages of which are: steady state → limit cycle →
torus → . . .→ chaos.

3 Theory
In Sec. 2, we described an opto-electronic device that

can produce high-dimensional chaos. The character-
istic time scales of the oscillations can be adjusted by
changing the bandpass characteristics in the feedback
loop. We also showed that the device-dynamics is well
described by a DDE (Eq. (1) or Eq.(3)). This DDE is
related to Ikeda-type DDEs [Ikeda, 1987] but extends
the Ikeda model by including high-pass filter transfer
characteristics of the feedback in addition to the low-
pass filter characteristics considered by Ikeda.
In designing devices, it is useful to have theoretical
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insights concerning the possible dynamics and the bi-
furcation scenarios that one might expect. Questions
that are of practical interest include: For which param-
eter values is the steady state stable and what are the
bifurcations of the steady state? What determines the
frequency and stability of periodic oscillations? Is the
system multi-stable? Is the chaotic attractor in these
system robust with respect to parameter variations?

For time-delay devices with passive nonlinearity and
DC-coupled feedback, i.e. devices that can be model
through scalar DDEs of Ikeda-type, many of these
questions have been addressed both experimentally
[Derstine, 1983; Liu, 1991; Goedgebuer, 1998] and
theoretically [Ikeda, 1979; Nardone, 1986; Ikeda,
1987; Hale, 1996; Giannakopoulos, 1999; Nizette,
2004; Erneux, 2004], starting in 1979 with the pioneer-
ing work of Ikeda [Ikeda, 1979]. On the other hand, for
DDEs of the form of Eq. (3), a similarly rigorous study
remains to be done.

In this section we take a first step in the direction of a
rigorous mathematical analysis of time-delay systems
with band-limited feedback by analyzing the bifurca-
tions from the steady-state solution of model (3) for
arbitrary nonlinearities f .

3.1 Characteristic Equation
We use linear stability analysis to investigate the local

stability of the trivial solution x = y = 0. The triv-
ial solution is the only steady state solution of Eq. (3).
The main idea is to ask how small perturbations to the
trivial solution evolve for a given set of parameter val-
ues, which is equivalent to studying the corresponding
characteristic equation [Hale, 1993; Hale, 2002]. The



characteristic equation of model (3) is

λ2 + λ + r − bλe−λτ = 0, (5)

where the effective slope b (proportional to the feed-
back gain) is one of the relevant bifurcation parameters
of the problem. The delay τ is the second relevant bi-
furcation parameter.
To determine the local stability of the fixed point, we

consider solutions of (5), which is transcendental and
has an infinite number of roots λ for every set of pa-
rameters. The steady state is locally stable if all roots
(eigenvalues) have a negative real part. Thus, to de-
termine parameter values for which the fixed point be-
comes unstable, we set Re(λ) = 0 and Im(λ) = iΩ.
Separating real and imaginary part yields

0 = −Ω2 + r − bΩsin(Ωτ),

0 = 1 − b cos(Ωτ).
(6)

We find that all roots of Eq. (6) have nonzero frequency
Ω and occur in complex conjugate pairs (λ = ±iΩ).
Thus, generically, a Hopf bifurcation occurs.
One way to visualize the solution of (6) is to seek

parameterized curves in the plane of two bifurcation
parameters, which we choose as the delay τ and the
effective slope b. Since only Hopf bifurcations occur
in our system, we will refer to these curves as Hopf
curves. The Hopf curves separate regions in parame-
ter space with different numbers of eigenvalues in the
right complex halfplane. The relevant region where the
fixed point is stable (no eigenvalues in the right com-
plex halfplane) is the one that includes γ = b = 0.
The parameterization of the Hopf curves is most conve-
niently achieved by introducing a new variable s = Ωτ ,
yielding

τn

C(s) =
s

2r

(

tan(s) +
√

tan2(s) + 4r

)

bn

C(s) =
1

cos(s)
.

(7)

Here, the label n denotes the different solution
branches. For n ∈ N

+ the parameterization variable
s is in the range (2n− 1)π/2 < s < (2n + 1)π/2, and
0 < s < π/2 for the branch with n = 0. Note that bn

C

is positive for even n and negative for odd n.
In Fig. 5A, the stability boundary of the fixed point

is shown in parameter space. It is seen, that the trivial
solution is always locally stable if −1 < b < 1, inde-
pendent of the delay τ . Furthermore, for large delays,
|bC | ≈ 1 becomes an increasingly accurate approxima-
tion of the stability boundary. On the other hand the
trivial solution may be stable for a considerably larger
range of the bifurcation parameter, for small delays τ .
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Figure 5. A) In the space formed by the delay and the effective

slope we display in blue the region of local stability. Note that a

large part of the stability region (−1 < b < 1) has been con-

tracted in order to make details of the boundary visible. B) A de-

tailed look is provided at a portion of the stability boundary (red

box in panel A) which is formed by combining appropriate parts of

the Hopf-curves (τn

C
(s), bn

C
(s)). The full extent of these curves

is shown as solid lines (starting from the left the curve-index n is

n = 2, 4, 6, 8, . . .). The Hopf-curves delimit regions in parame-

ter space for which there is a constant number eigenvalues in the right

complex halfplane. This number is also given. The square symbol

marks points on the stability boundary where two pairs of complex

conjugate eigenvalues lie on the imaginary axis, whereas crosses de-

note the extrema of the Hopf-curves, i.e. b = 1. The blue dash-

dotted line indicates the delay that was used in the experiment (see

Fig. 2A, Fig. 3, and Fig. 4).

Figure 5B provides a zoomed-in view of part of the
parameter-space where the boundary and the full ex-
tent of the parameterized curves (τn

C
(s), bn

C
(s)) are de-

picted. It can be shown that the pairs of simple char-
acteristic roots of Eq. (5) always cross the imaginary
axis transversally [Illing]. Therefore, the number of
eigenvalues in the right complex halfplane can easily be
determined by counting how many of Hopf curves are
crossed. This number is indicated in Fig. 5B. Further-
more, there is exactly one pair of roots on the imaginary
axis for all parameter combinations of b and τ that fall
on one of the Hopf-curves. The exception are points
where two Hopf-curves intersect, because two pairs of
eigenvalues cross into the right halfplane in that case
and a codimension-two bifurcation (double-Hopf bifur-
cation) occurs. The location of double-Hopf points is
indicated in Figure 5B by square symbols.
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Figure 6. Imaginary part of the eigenvalue versus the delay.

Ωn

C
(τ) is shown for positive b (n is even) and r = 0.028 . The

part of each branch n that belongs to the stability boundary is shown

as bold red line. The dashed lines are an approximation (see text).

In Figure 5B the blue dash-dotted line indicates the
delay at which the critical gain was determined in the
experiment (see Fig. 2A ). From the theory we obtain
bC = 1.003, which corresponds to a feedback-gain
γ = 5.34 mV/mW, in agreement with the experimental
result of γC = 5.1 ± 0.5 mV/mW.
The main result of above linear stability analysis is the

steady state will lose it’s stability, generically, through
a Hopf bifurcation in time-delay systems with band-
limited feedback. This result is independent of the spe-
cific form of the nonlinearity f . Additionally, we find
that double-Hopf points exist along the stability bound-
ary. In experiments, the chance of choosing the delay
so that the stability boundary will be crossed close to a
double-Hopf point is negligible. However, it is known
that double-Hopf interactions lead to limit cycles as
well as tori and chaos [Guckenheimer, 1983]. The ex-
istence of double-Hopf points therefore indicates that
quasi-periodic and chaotic dynamics might occur in
such systems, in agreement with our experimental find-
ings.

3.2 Frequency
So far we have discussed the conditions under which

the steady state is stable. That is, we have shown how
to calculate the critical gain γC for known values of the
delay (τ ), the first derivative of the nonlinearity (f ′(0)),
and the frequency of maximal transmission (

√
r). The

value of γC can be compared with experiments. An-
other useful way to compare experiments and theory
is to study the frequency of oscillations at the onset of
instability.
Consider the case where the Hopf bifurcation is su-

percritical. In this case, as the stability boundary is
crossed, the fixed point becomes unstable, a stable limit
cycle is born, and the system starts to oscillate. Ex-
perimentally the frequency of oscillation is the quan-
tity that is most readily measured. The frequency at
onset, denoted by fn

C
, is determined by Ωn

C
through

fn

C
= Ωn

C
(2π)−1(ωh + ωl). Therefore, it is useful to

plot the eigenvalue Ωn

C
versus the delay τ as is done in

Fig. 6.

The frequency scales roughly as Ωn

C
∼ nπ/τ (fn

C
∼

n/(2τ)) for n > 0 in the vicinity of the extrema
of the Hopf curves (crosses in Fig. 5B), |bn

C
| = 1,

Ωn

C
=

√
r). This scaling of the frequency is shown

in Fig. 6 using dashed lines and is explained by consid-
ering whether a wave circulating in the feedback loop
will reinforce itself. For the case of positive feedback
(b > 0) a periodic perturbation will reinforce itself, if
the feedback delay is a multiple of the wave’s period,
i.e. f ∼ n/(2τ) with n an even integer. On the other
hand, a sinusoidal perturbation is amplified by negative
feedback (b < 0), if it is shifted by half it’s period af-
ter one round-trip. Thus, for bC < 0 the frequency is
expected to scale as f ∼ n/(2τ) with n an odd inte-
ger. This reasoning is consistent with the fact that for
n even (odd) the critical effective slope bn

C
is positive

(negative).

From Fig. 6, it is seen also that different oscillation
“modes” will be observed as τ is increased. That is, the
frequency of the observed oscillations will jump from
f ∼ n/(2τ) to f ∼ (n + 2)/(2τ) as τ is varied across
one of the double-Hopf points; squares in Fig. 5B.
These jumps are explained by the fact that the gain in
the feedback loop is not perfectly flat over the pass-
band. As b is increased from a low level, one particular
frequency will first reach the threshold where the gain
in the loop balances the losses. In a system with only
low-pass feedback, the gain is highest at low frequen-
cies, so the oscillation-mode with the lowest frequency
is always the one that destabilizes the steady state, inde-
pendent of the delay. On the other hand, the high-pass
filter introduces a bias toward high frequencies. Be-
cause the frequency scales roughly as fn

C
∼ τ−1 for

each mode n, the damping effect of the high pass filter
on a particular mode becomes more pronounced with
increasing delay time τ . Therefore, there exists a delay
τ for which a higher order mode, one that has a higher
frequency for a given delay, will reach threshold first.

Thus, the scaling of the frequency of the limit-cycles
that we observed in the experiment (see Fig. 2) is not
specific to our device but rather a general feature of any
time-delay systems with band-limited feedback. In this
context, recall that the limit cycle at onset for Ikeda-
type DDEs is always the fundamental “period-2” mode,
with a frequency f ∼ (2τ)−1 for large delays (τ � τl)
[Nardone, 1986; Erneux, 2004]. Since high-pass filter-
ing, in contrast, results in a stability boundary where
the mode at threshold varies with the chosen delay,
it is possible to experimentally distinguish time-delay
systems with band-limited feedback from systems with
low-pass feedback by examining the frequency of the
oscillations at the onset of instability as a function of
the delay.



3.3 Hopf bifurcation type
In the previous sections, we have shown that a time-

delay system with band-limited feedback undergoes
Hopf bifurcations as the system parameters are var-
ied. However, we have not yet determined whether the
Hopf bifurcations are subcritical or supercritical. The
expected dynamical behavior close to threshold is very
distinct for the two bifurcation types. For a supercriti-
cal Hopf bifurcation, one expects small amplitude sinu-
soidal oscillations past the critical gain, whereas for a
subcritical bifurcation, one expects bistability and hys-
teresis close to the bifurcation point.
One way to determine the type of bifurcation is

through the use of center manifold techniques and
normal form theory. Normal forms have been stud-
ied extensively for finite-dimensional ordinary differ-
ential equations (ODEs) [Guckenheimer, 1983]. Re-
cently, normal-form theory was developed for the case
of DDEs [Faria, 1995], which may be applied to model
(3) to show that both subcritical and supercritical Hopf
bifurcations can occur, depending on the parameters
[Illing].
For a fixed delay τ and r, the critical effective slope

bn

C
and Ωn

C
are uniquely determined for each of the

Hopf curves with label n. For given τ, r, bn

C
(r, τ), and

Ωn

C
(r, τ), it is possible to derive a criterion that deter-

mines the Hopf-bifurcation type based on the knowl-
edge of the second and third derivative of the nonlinear
function, i.e. f ′′(0) and f ′′′(0). To state this criterion
we define

Nn = [r + Ω2][b4 + 2b3 + b2 − 4]+

+ sgn(τ − nπ√
r
)3Ω

√

b2 − 1[(4 − b2)(r + Ω2) + 2Ω2τb2]

+2Ω2τb2[b3 − 1]

and

Cn(τ, r) =
−2Ω2b−1

(b2Ω2τ + r + Ω2)
Nn·

·
∣

∣2iΩb + (4Ω2 − 2iΩ − r)e2iΩτ
∣

∣

−2
.

(8)

Here, b = bn

C
and Ω = Ωn

C
is used for notational con-

venience. It can be then be shown [Illing] that

Proposition 1. For r, τ ∈ R
+, r ≤ 1

4
, and n =

0, 1, 2, . . . :
• If f ′(0) f ′′′(0) + f ′′(0)2 Cn(τ, r) > 0, the Hopf bi-
furcation is subcritical.
• If f ′(0) f ′′′(0) + f ′′(0)2 Cn(τ, r) < 0, the Hopf bi-
furcation is supercritical.

Since the Taylor-series coefficients of f are known, the
difficulty in determining whether the Hopf-bifurcation
is subcritical or supercritical is shifted to finding the
value of Cn(τ, r). Two simple cases that arise in this
context are the following:

Corollary 2.

(1) There are no quadratic terms in the Taylor expan-
sion of the nonlinearity (f ′′(0) = 0): Therefore, if
f ′(0)f ′′′(0) > 0, the Hopf bifurcation is subcrit-
ical. If f ′(0)f ′′′(0) < 0, the Hopf bifurcation is
supercritical.

(2) There are no cubic terms in the Taylor expan-
sion of the nonlinearity: If f ′′′(0) = 0 and
f ′′(0) 6= 0, then the Hopf bifurcation is subcritical
if Cn(τ, r) > 0 and supercritical if Cn(τ, r) < 0.

In this section, we provide in Proposition 1 a criterion
that determines the type of Hopf bifurcation in general
but requires the numerical evaluation of the function
Cn(τ, r). The Hopf bifurcation type can be determined
without the evaluation of Cn(τ, r) if certain assump-
tions about the parameters of model (3) are satisfied
(see corollary 2 and also [Illing]).
To illustrate the theoretical findings, we consider

the specific example of the opto-electronic time-delay
feedback systems with band-limited feedback de-
scribed in Sec. 2, where a supercritical Hopf bifurca-
tion was found. The nonlinearity f of the experiment,
given by Eq. (4), is such that the experiment does not
fall into one of the simple cases of Corollary 2, ne-
cessitating a numerical evaluation of Cn(τ, r), which
reveals that f ′(0)f ′′(0) + f ′′(0)2Cn(τ, r) < 0. Thus,
the bifurcation is predicted to be supercritical, in agree-
ment with the experimental result.

4 Summary and Conclusion
This paper focuses on the class of time-delay sys-

tems that are characterized by a passive nonlinearity
and a band-limited feedback. We describe an opto-
electronic device with band-limited feedback that oper-
ates in the megahertz frequency range and that allows
adjustment of the characteristic time scale of the oscil-
lations by changing the band-pass characteristics of the
feedback loop. We show that the periodic oscillations
in the device arise through Hopf bifurcations and pro-
vide evidence that the observed device dynamics for
large feedback-gains are due to deterministic chaos.
We study theoretically the general model for time-
delay systems with band-limited feedback and show
that Hopf-bifurcations of the steady state are a generic
feature of such systems. Furthermore, we provide a cri-
terion that determines whether the Hopf-bifurcation is
supercritical or subcritical.
We find that the inclusion of a high-pass filter in the

feedback loop significantly changes the qualitative dy-
namics of optical feedback systems with passive non-
linearity in comparison to only low-pass filtering as in
the Ikeda system [Ikeda, 1982]. Bandpass feedback al-
lows not only “fundamental” frequencies f ∼ (2τ)−1

but oscillations with f ∼ τ−1 become possible. The
route to chaos is apparently changed when the feedback
of DC-signals is blocked. That is, we do not observe a
period doubling route to chaos but a more complicated
transition, the details of which are not yet fully under-
stood.
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